Introduction:

Dementia presents a formidable challenge in healthcare, with conventional treatments often falling short in addressing its complex manifestations. Amidst this backdrop, alternative approaches such as microdosing psychedelics and Lion’s Mane mushroom supplementation have emerged as intriguing avenues for exploration. This article delves into the potential synergy of these interventions in dementia management while introducing related products by Microdosing Bros and MB Superfoods.

Understanding Lion’s Mane, Microdosing Psychedelics, and Dementia:

Lion’s Mane, revered for its neuroprotective properties, promotes nerve growth factor (NGF) production and neurogenesis, offering potential benefits for cognitive function. Microdosing psychedelics involves consuming sub-perceptual doses of substances like LSD or psilocybin, with anecdotal evidence suggesting cognitive enhancement without hallucinogenic effects. Combining these interventions could address various facets of dementia pathology, from neuroplasticity to neurotransmitter modulation.

Anecdotal Reports and Preliminary Research:

Anecdotal reports from individuals experimenting with Lion’s Mane supplementation and microdosing psychedelics hint at improvements in cognitive function, memory, and mood. While empirical research on this synergy in dementia is limited, preliminary studies on each intervention separately show promise. Robust clinical trials are needed to validate these claims and elucidate underlying mechanisms.

Introducing Lion’s Mane Organic Mushroom Powder by MB Superfoods:

For those interested in exploring the potential benefits of Lion’s Mane, MB Superfoods offers premium Lion’s Mane Organic Mushroom Powder. Sourced from high-quality organic Lion’s Mane mushrooms, this product provides a convenient and potent supplement for daily wellness routines. Learn more and purchase at MB Superfoods Lion’s Mane Organic Mushroom Powder.

Exploring Microdosing Options by Microdosing Bros:

Microdosing Bros offers two distinct options for individuals considering microdosing psychedelics:

  1. McMicrodose Starter Kit featuring 6 Individual 1-gram Truffles: Ideal for beginners, this kit contains six individual 1-gram truffles, providing a convenient and controlled introduction to microdosing. Learn more and purchase at McMicrodose Starter Kit.
  2. McMicrodose Premium Magic Truffles – 20 Grams: For those seeking a more comprehensive supply, the McMicrodose Premium Magic Truffles offer 20 grams of high-quality psychedelic truffles. Explore the benefits of microdosing with this premium product. Learn more and purchase at McMicrodose Premium Magic Truffles.

Conclusion:

The convergence of Lion’s Mane supplementation, microdosing psychedelics, and dementia management presents a compelling avenue for further investigation. While anecdotal evidence and preliminary research show promise, rigorous scientific inquiry is essential to validate these claims and understand the mechanisms underlying their synergy. As interest in alternative approaches to dementia grows, collaboration between researchers, healthcare professionals, and innovative product providers like MB Superfoods and Microdosing Bros will be pivotal in advancing knowledge and offering hope to individuals affected by this challenging condition.

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472664/

  • Aday J. S., Bloesch E. K., Davoli C. C. (2020). Can psychedelic drugs attenuate age-related changes in cognition and affect? J. Cogn. Enhan. 4, 219–227. 10.1007/s41465-019-00151-6 [CrossRef] [Google Scholar]
  • Agin-Liebes G. I., Malone T., Yalch M. M., Mennenga S. E., Ponté K. L., Guss J., et al.. (2020). Long-term follow-up of psilocybin-assisted psychotherapy for psychiatric and existential distress in patients with life-threatening cancer. J. Psychopharmacol. 34, 155–166. 10.1177/0269881119897615 [PubMed] [CrossRef] [Google Scholar]
  • Alzheimer’s Society (2019). Demography. Available online at: http://www.alzheimers.org.uk/site/scripts/documents_info.php?documentID=412. Accessed May 20, 2019.
  • Anderson T., Petranker R., Christopher A., Rosenbaum D., Weissman C., Dinh-Williams L. A., et al.. (2019). Psychedelic microdosing benefits and challenges: an empirical codebook. Harm Reduct. J. 16:43. 10.1186/s12954-019-0308-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Athilingam J. C., Ben-Shalom R., Keeshen C. M., Sohal V. S., Bender K. J. (2017). Serotonin enhances excitability and γ frequency temporal integration in mouse prefrontal fast-spiking interneurons. eLife 6:e31991. 10.7554/elife.31991.022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Basar E., Emek-Savas D. D., Güntekin B., Yener G. G. (2016). Delay of cognitive γ responses in Alzheimer’s disease. Neuroimage Clin. 11, 106–115. 10.1016/j.nicl.2016.01.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Basar E., Femir B., Emek-Savas D. D., Güntekin B., Yener G. G. (2017). Increased long distance event-related γ band connectivity in Alzheimer’s disease. Neuroimage Clin. 14, 580–590. 10.1016/j.nicl.2017.02.021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Bershad A. K., Preller K. H., Lee R., Keedy S., Wren-Jarvis J., Bremmer M. P., et al.. (2020). Preliminary report on the effects of a low dose of LSD on resting state amygdalar functional connectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 461–467. 10.1016/j.bpsc.2019.12.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Bershad A. K., Schepers S. T., Bremmer M. P., Lee R., de Wit H. (2019). Acute subjective and behavioral effects of microdoses of LSD in healthy human volunteers. Biol. Psychiatry 86, 792–800. 10.1016/j.biopsych.2019.05.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Bravermanová A., Viktorinová M., Tylš F., Novák T., Androvičová R., Korčák J., et al.. (2018). Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing—study on P300 and mismatch negativity in healthy volunteers. Psychopharmacology 235, 491–503. 10.1007/s00213-017-4807-2 [PubMed] [CrossRef] [Google Scholar]
  • Bryson A., Carter O., Norman T., Kanaan R. (2017). 5-HT2A agonists: a novel therapy for functional neurological disorders? Int. J. Neuropsychopharmacol. 20, 422–427. 10.1093/ijnp/pyx011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Buchborn T., Grecksch G., Dieterich D. C., Höllt V. (2016). “Tolerance to lysergic acid diethylamide: overview, correlates, and clinical implications,” in Neuropathology of Drug Addictions and Substance Misuse, ed. Preedy V. R. (San Diego, CA: Academic Press; ), 846–858. [Google Scholar]
  • Buchborn T., Schröder H., Höllt V., Grecksch G. (2014). Repeated lysergic acid diethylamide in an animal model of depression: normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J. Psychopharmacol. 28, 545–552. 10.1177/0269881114531666 [PubMed] [CrossRef] [Google Scholar]
  • Cameron L. P., Benson C. J., DeFelice B. C., Fiehn O., Olson D. E. (2019). Chronic, intermittent microdoses of the psychedelic N, N-Dimethyltryptamine (DMT) produce positive effects on mood and anxiety in rodents. ACS Chem. Neurosci. 10, 3261–3270. 10.1021/acschemneuro.8b00692 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Carhart-Harris R. L., Bolstridge M., Day C. M., Rucker J., Watts R., Erritzoe D. E., et al.. (2018). Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology 235, 399–408. 10.1007/s00213-017-4771-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Carhart-Harris R. L., Erritzoe D., Williams T., Stone J. M., Reed L. J., Colasanti A., et al.. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U S A 109, 2138–2143. 10.1073/pnas.1119598109 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Carhart-Harris R. L., Goodwin G. M. (2017a). The therapeutic potential of psychedelic drugs: past present and future. Neuropsychopharmacology 42, 2105–2113. 10.1038/npp.2017.84 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Carhart-Harris R. L., Roseman L., Bolstridge M., Demetriou L., Pannekoek J. N., Wall M. B., et al.. (2017b). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7:13187. 10.1038/s41598-017-13282-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Carhart-Harris R. L., Nutt D. J. (2017). Serotonin and brain function: a tale of two receptors. J. Psychopharmacol. 31, 1091–1120. 10.1177/0269881117725915 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Carter O. L., Burr D. C., Pettigrew J. D., Wallis G. M., Hasler F., Vollenweider F. X. (2005). Using psilocybin to investigate the relationship between attention, working memory and the serotonin 1A and 2A receptors. J. Cogn. Neurosci. 17, 1497–1508. 10.1162/089892905774597191 [PubMed] [CrossRef] [Google Scholar]
  • Catlow B. J., Song S., Paredes D. A., Kirstein C. L., Sanchez-Ramos J. (2013). Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res. 228, 481–491. 10.1007/s00221-013-3579-0 [PubMed] [CrossRef] [Google Scholar]
  • Cini F. A., Ornelas I., Marcos E., Goto-Silva L., Nascimento J., Ruschi S., et al. (2019). d-Lysergic acid diethylamide has major potential as a cognitive enhancer. bioRxiv [Preprint]. 10.1101/866814 [CrossRef] [Google Scholar]
  • Clinicaltrials.gov (2020). Psilocybin for Depression in People With Mild Cognitive Impairment or Early Alzheimer’s Disease. Available online at: https://clinicaltrials.gov/ct2/show/NCT04123314?term=psilocybinandcond=Alzheimer+Disease&draw=2&rank=1. Accessed June 24, 2020.
  • Deco G., Cruzat J., Cabral J., Knudsen G. M., Carhart-Harris R. L., Whybrow P. C., et al.. (2018). Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr. Biol. 28, 3065.e6–3074.e6. 10.1016/j.cub.2018.07.083 [PubMed] [CrossRef] [Google Scholar]
  • Draper B. (2013). Understanding Alzheimer’s Disease and Other Dementias. London: Jessica Kingsley. [Google Scholar]
  • Fadiman J., Korb S. (2019). Might microdosing psychedelics be safe and beneficial? An initial exploration. J. Psychoactive Drugs 51, 118–122. 10.1080/02791072.2019.1593561 [PubMed] [CrossRef] [Google Scholar]
  • Family N., Maillet E. L., Williams L. T., Krediet E., Carhart-Harris R. L., Williams T. M., et al.. (2020). Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacology 237, 841–853. 10.1007/s00213-019-05417-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Fanibunda S. E., Deb S., Maniyadath B., Tiwari P., Ghai U., Gupta S., et al.. (2019). Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis. Proc. Natl. Acad. Sci. U S A 116, 11028–11037. 10.1073/pnas.1821332116 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Flanagan T. W., Nichols C. D. (2018). Psychedelics as anti-inflammatory agents. Int. Rev. Psychiatry 30, 363–375. 10.1080/09540261.2018.1481827 [PubMed] [CrossRef] [Google Scholar]
  • Garibotto V., Herholz K., Boccardi M., Picco A., Varrone A., Nordberg A., et al.. (2017). Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol. Aging 52, 183–195. 10.1016/j.neurobiolaging.2016.03.033 [PubMed] [CrossRef] [Google Scholar]
  • Gasser P., Kirchner K., Passie T. (2015). LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: a qualitative study of acute and sustained subjective effects. J. Psychopharmacol. 29, 57–68. 10.1177/0269881114555249 [PubMed] [CrossRef] [Google Scholar]
  • Griffiths R. R., Johnson M. W., Carducci M. A., Umbricht A., Richards W. A., Richards B. D., et al.. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30, 1181–1197. 10.1177/0269881116675513 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Halberstadt A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res. 277, 99–120. 10.1016/j.bbr.2014.07.016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hutten N. R., Mason N. L., Dolder P. C., Kuypers K. P. (2019). Motives and side-effects of microdosing with psychedelics among users. Int. J. Neuropsychopharmacol. 22, 426–434. 10.1093/ijnp/pyz029 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hutten N., Mason N., Dolder P., Theunissen E., Liechti M., Feilding A., et al. (2020). Cognitive and subjective effects of different low ‘micro’ doses of LSD in a placebo-controlled study. Eur. Neuropsychopharmacol. 31, S63–S64. 10.1016/j.euroneuro.2019.12.086 [PubMed] [CrossRef] [Google Scholar]
  • Jensen O., Kaiser J., Lachaux J.-P. (2007). Human γ-frequency oscillations associated with attention and memory. Trends Neurosci. 30, 317–324. 10.1016/j.tins.2007.05.001 [PubMed] [CrossRef] [Google Scholar]
  • Johnstad P. G. (2018). Powerful substances in tiny amounts: an interview study of psychedelic microdosing. Nordic Stud. Alcohol Drugs 35, 39–51. 10.1177/1455072517753339 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Jones S. V., Kounatidis I. (2017). Nuclear factor-κ B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front. Immunol. 8:1805. 10.3389/fimmu.2017.01805 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Jones K. A., Srivastava D. P., Allen J. A., Strachan R. T., Roth B. L., Penzes P. (2009). Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl. Acad. Sci. U S A 106, 19575–19580. 10.1073/pnas.0905884106 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • König T., Prichep L., Dierks T., Hubl D., Wahlund L. O., John E. R., et al.. (2005). Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 26, 165–171. 10.1016/j.neurobiolaging.2004.03.008 [PubMed] [CrossRef] [Google Scholar]
  • Kapogiannis D., Mattson M. P. (2011). Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 10, 187–198. 10.1016/S1474-4422(10)70277-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Kraehenmann R., Preller K. H., Scheidegger M., Pokorny T., Bosch O. G., Seifritz E., et al.. (2015). Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol. Psychiatry 78, 572–581. 10.1016/j.biopsych.2014.04.010 [PubMed] [CrossRef] [Google Scholar]
  • Kuypers K. P., Ng L., Erritzoe D., Knudsen G. M., Nichols C. D., Nichols D. E., et al.. (2019). Microdosing psychedelics: more questions than answers? An overview and suggestions for future research. J. Psychopharmacol. 33, 1039–1057. 10.1177/0269881119857204 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Laccarino H. F., Singer A. C., Martorell A. J., Rudenko A., Gao F., Gillingham T. Z., et al.. (2016). γ frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235. 10.1038/nature20587 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Lea T., Amada N., Jungaberle H. (2020a). Psychedelic microdosing: a subreddit analysis. J. Psychoactive Drugs 52, 101–112. 10.1080/02791072.2019.1683260 [PubMed] [CrossRef] [Google Scholar]
  • Lea T., Amada N., Jungaberle H., Schecke H., Klein M. (2020b). Microdosing psychedelics: motivations, subjective effects and harm reduction. Int. J. Drug Policy 75:102600. 10.1016/j.drugpo.2019.11.008 [PubMed] [CrossRef] [Google Scholar]
  • Ly C., Greb A. C., Cameron L. P., Wong J. M., Barragan E. V., Wilson P. C., et al.. (2018). Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182. 10.1016/j.celrep.2018.05.022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Mably A. J., Colgin L. L. (2018). γ oscillations in cognitive disorders. Curr. Opin. Neurobiol. 52, 182–187. 10.1016/j.conb.2018.07.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Martin D. A., Marona-Lewicka D., Nichols D. E., Nichols C. D. (2014). Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology 83, 1–8. 10.1016/j.neuropharm.2014.03.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Martorell A. J., Paulson A. L., Suk H. J., Abdurrob F., Drummond G. T., Guan W., et al.. (2019). Multi-sensory γ stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177, 256–271. 10.1016/j.cell.2019.02.014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Mertens L. J., Wall M. B., Roseman L., Demetriou L., Nutt D. J., Carhart-Harris R. L. (2020). Therapeutic mechanisms of psilocybin: changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J. Psychopharmacol. 34, 167–180. 10.1177/0269881119895520 [PubMed] [CrossRef] [Google Scholar]
  • Mu Y., Gage F. H. (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 6:85. 10.1186/1750-1326-6-85 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Muthukumaraswamy S. D., Carhart-Harris R. L., Moran R. J., Brookes M. J., Williams T. M., Errtizoe D., et al.. (2013). Broadband cortical desynchronization underlies the human psychedelic state. J. Neurosci. 33, 15171–15183. 10.1523/JNEUROSCI.2063-13.2013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Nichols D. E. (2004). Hallucinogens. Pharmacol. Ther. 101, 131–181. 10.1016/j.pharmthera.2003.11.002 [PubMed] [CrossRef] [Google Scholar]
  • Palop J. J., Mucke L. (2016). Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792. 10.1038/nrn.2016.141 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Pilly P. K., Grossberg S. (2012). How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells. J. Cogn. Neurosci. 24, 1031–1054. 10.1162/jocn_a_00200 [PubMed] [CrossRef] [Google Scholar]
  • Polito V., Stevenson R. J. (2019). A systematic study of microdosing psychedelics. PLoS One 14:e0211023. 10.1371/journal.pone.0211023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Prochazkova L., Lippelt D. P., Colzato L. S., Kuchar M., Sjoerds Z., Hommel B. (2018). Exploring the effect of microdosing psychedelics on creativity in an open-label natural setting. Psychopharmacology 235, 3401–3413. 10.1007/s00213-018-5049-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Puig M. V., Watakabe A., Ushimaru M., Yamamori T., Kawaguchi Y. (2010). Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J. Neurosci. 30, 2211–2222. 10.1523/JNEUROSCI.3335-09.2010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Rice L., Bisdas S. (2017). The diagnostic value of FDG and amyloid PET in Alzheimer’s disease—A systematic review. Eur. J. Radiol. 94, 16–24. 10.1016/j.ejrad.2017.07.014 [PubMed] [CrossRef] [Google Scholar]
  • Romano A. G., Quinn J. L., Li L., Dave K. D., Schindler E. A., Aloyo V. J., et al.. (2010). Intrahippocampal LSD accelerates learning and desensitizes the 5-HT 2A receptor in the rabbit. Psychopharmacology 212, 441–448. 10.1007/s00213-010-2004-7 [PubMed] [CrossRef] [Google Scholar]
  • Ross S., Bossis A., Guss J., Agin-Liebes G., Malone T., Cohen B., et al.. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180. 10.1177/0269881116675512 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Schmid Y., Liechti M. E. (2018). Long-lasting subjective effects of LSD in normal subjects. Psychopharmacology 235, 535–545. 10.1007/s00213-017-4733-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Schott B. H., Seidenbecher C. I., Richter S., Wüstenberg T., Debska-Vielhaber G., Schubert H., et al.. (2011). Genetic variation of the serotonin 2a receptor affects hippocampal novelty processing in humans. PLoS One 6:e15984. 10.1371/journal.pone.0015984 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Setti S. E., Hunsberger H. C., Reed M. N. (2017). Alterations in hippocampal activity and Alzheimer’s disease. Transl. Issues Psychol. Sci. 3, 348–356. 10.1037/tps0000124 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Shahidi S., Hashemi-Firouzi N., Afshar S., Asl S. S., Komaki A. (2019). Protective effects of 5-ht1a receptor inhibition and 5-ht2a receptor stimulation against streptozotocin-induced apoptosis in the hippocampus. Malays. J. Med. Sci. 26, 40–51. 10.21315/mjms2019.26.2.5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Smigielski L., Scheidegger M., Kometer M., Vollenweider F. X. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. NeuroImage 196, 207–215. 10.1016/j.neuroimage.2019.04.009 [PubMed] [CrossRef] [Google Scholar]
  • Tagliazucchi E., Roseman L., Kaelen M., Orban C., Muthukumaraswamy S. D., Murphy K., et al.. (2016). Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr. Biol. 26, 1043–1050. 10.1016/j.cub.2016.02.010 [PubMed] [CrossRef] [Google Scholar]
  • UK Government Web Archive (2020). The National Archives. Life Tables. Available online at: http://www.ons.gov.uk/ons/rel/lifetables/historic-and-projected-data-from-the-period-and-cohort-life-tables/2012-based/stb-2012-based.html. Accessed January 2, 2020.
  • Vaidya V. A., Marek G. J., Aghajanian G. K., Duman R. S. (1997). 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J. Neurosci. 17, 2785–2795. 10.1523/JNEUROSCI.17-08-02785.1997 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Van Deursen J. A., Vuurman E. F., Verhey F. R., van Kranen-Mastenbroek V. H., Riedel W. J. (2008). Increased EEG γ band activity in Alzheimer’s disease and mild cognitive impairment. J. Neural Transm. 115, 1301–1311. 10.1007/s00702-008-0083-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Verret L., Mann E. O., Hang G. B., Barth A. M., Cobos I., Ho K., et al.. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721. 10.1016/j.cell.2012.02.046 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Vollenweider F. X., Leenders K. L., Scharfetter C., Maguire P., Stadelmann O., Angst J. (1997). Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16, 357–372. 10.1016/s0893-133x(96)00246-1 [PubMed] [CrossRef] [Google Scholar]
  • Wang J., Fang Y., Wang X., Yang H., Yu X., Wang H. (2017). Enhanced γ activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with Alzheimer’s disease. Front. Aging Neurosci. 9:243. 10.3389/fnagi.2017.00243 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Weber E. T., Andrade R. (2010). Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice. Front. Neurosci. 4:36. 10.3389/fnins.2010.00036 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Wood J., Kim Y., Moghaddam B. (2012). Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J. Neurosci. 32, 3022–3031. 10.1523/JNEUROSCI.6377-11.2012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Yoshida H., Kanamaru C., Ohtani A., Li F., Senzaki K., Shiga T. (2011). Subtype specific roles of serotonin receptors in the spine formation of cortical neurons in vitro. Neurosci. Res. 71, 311–314. 10.1016/j.neures.2011.07.1824 [PubMed] [CrossRef] [Google Scholar]
  • Zhang G., Ásgeirsdóttir H. N., Cohen S. J., Munchow A. H., Barrera M. P., Stackman R. W., Jr. (2013). Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64, 403–413. 10.1016/j.neuropharm.2012.06.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Zhang G., Stackman R. W., Jr. (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 6:225. 10.3389/fphar.2015.00225 [PMC free article] [PubMed] [CrossRef] [Google Scholar]